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Abstract
We present a self-dual Drinfeld double structure underlying the An series of
simple Lie algebras. Such double is constructed through a central extension tn
of gl(n), and is obtained by pairing two disjoint solvable subalgebras coming
from positive and negative roots. The Cartan–Weyl basis of gl(n) is shown
to be completely determined by the compatibility conditions in the double. A
natural Lie bialgebra structure on gl(n) is obtained that offers a new perspective
for the construction of its quantum deformations.

PACS number: 02.20.Uw
Mathematics Subject Classification: 81R50, 81R40, 17B37

1. Introduction

The concept of Drinfeld double is just a reformulation of that of Lie bialgebra in terms of a
(double) dimensional Lie algebra endowed with a suitable pairing. Moreover, a well-known
result by Drinfeld states that Lie bialgebras are in one-to-one correspondence with Poisson–Lie
groups [1, 2].

These facts turn out to be relevant from a physical viewpoint, since from a given Drinfeld
double a pair of σ -models related by Poisson–Lie T-duality can be constructed (see [3–6]
and references therein). Thus, any new example of the Drinfeld double would be interesting,
but its explicit construction and classification is a difficult problem. In fact, only 4- and
6-dimensional Drinfeld doubles have been fully described so far [7–9].

On the other hand, the Hopf algebra quantization of a Drinfeld double is the so-called
quantum double, a basic object in quantum group theory (see, for instance, [2, 10–14] for a
detailed exposition and references therein). In particular, quantum doubles play an essential
role in the explicit construction of quantum R-matrices, which are cornerstones of the theory
of quantum integrable models (see [15–22]). Quantum doubles have also been considered as
symmetries in quantum field theory [23, 24].
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The aim of this paper is to provide explicitly a family of n(n + 1)-dimensional Drinfeld
doubles ḡ = gl(n) ⊕ tn (where tn is an Abelian algebra) which are directly related to the An

Cartan series. From a general viewpoint, this result will allow us to reinterpret simple Lie
algebras as Drinfeld doubles.

The Drinfeld double structure will be obtained by enlarging the Cartan subalgebra of
the algebra gl(n) in such a way that two disjoint solvable algebras, isomorphic to Borel
subalgebras, can be properly paired as follows:

• Firstly, the n-dimensional Cartan subalgebra hn is enlarged by introducing its direct sum
with an additional Abelian algebra tn generated by Ii, i = 1, . . . , n. A new basis in the
2n-dimensional Abelian algebra hn ⊕ tn is thus defined as

Xi := 1√
2
(Hi + iIi), xi := 1√

2
(Hi − iIi), (1.1)

where i is the imaginary unit.
• Afterwards, we consider two disjoint and isomorphic solvable Lie algebras s+ and s−,

which contain the Xi’s and xi’s generators and the positive and negative roots of gl(n),
respectively.

• Finally, we check that these two subalgebras, together with their crossed commutation
rules, define a Drinfeld double structure on ḡ = gl(n) ⊕ tn.

As a result of this construction, the Drinfeld double seems to be a structural ingredient of
simple Lie algebras. In order to define such self-dual Drinfeld double we find that the usual
description of simple Lie algebras in terms of the Chevalley–Cartan basis (and, obviously,
Serre relations) is not suitable, and we are forced to use a Cartan–Weyl one. Moreover,
the freedom in the choice of basis in the Cartan subalgebra and the indetermination given
by the nonfixed length of the root vectors in the Cartan approach (see [25]) is removed by
imposing the existence of a Drinfeld double structure that up to a unique scale factor requires
an orthonormal basis in the Cartan subalgebra and fixes all the commutation rules. The
Cartan–Weyl basis is, hence, completely determined by its underlying Drinfeld double
structure.

We also recall that, from a quantum point of view, Drinfeld–Jimbo deformations of
semi-simple Lie algebras [26, 27] are closely related to quantum doubles. For a complete
discussion of the problem we refer to [13], where it is shown that for every finite-dimensional
complex simple Lie algebra g, its standard quantization Uh(g) is ‘almost’ a quantum double.
However, since the positive and negative quantum Borel subalgebras have in common the
Cartan subalgebra, the pairing between them cannot exist and a Drinfeld double structure is not
available. We stress that the results presented here also provide an explicit way to circumvent
this problem and to construct a family of quantum deformations of simple algebras as true
quantum doubles.

The paper is organized as follows. In section 2 we recall the basic definitions. Section 3
is devoted to the gl(2) case, which is fully discussed. The generalization to gl(n) is presented
in section 4 and some comments and remarks are included in the last section.

2. Manin triples and Drinfeld doubles

We recall that a Lie algebra ḡ is called a Drinfeld double if it can be endowed with a Manin
triple structure [2, 13, 14]. A Manin triple is a set of three Lie algebras (s+, s−, ḡ) such that s+

and s− are disjoint subalgebras of ḡ having the same dimension, ḡ = s+ + s− as vector spaces
and the crossed commutation rules between s+ and s− are defined in terms of the structure
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tensors f and c of s+ and s−. Explicitly, we consider

[Zp,Zq] = f r
p,qZr, Zp, Zq, Zr ∈ s+, (2.2)

[zp, zq] = cp,q
r zr , zp, zq, zr ∈ s−. (2.3)

Now let us define a pairing (i.e., a non-degenerate symmetric bilinear form on the vector space
s+ ⊕ s− for which s± are isotropic)

〈Zp,Zq〉 = 0, 〈Zp, zq〉 = δq
p, 〈zp, zq〉 = 0. (2.4)

If the compatibility relations (crossed Jacobi identities)

cp,q
r f r

s,t = cp,r
s f

q
r,t + cr,q

s f
p
r,t + c

p,r
t f q

s,r + c
r,q
t f p

s,r (2.5)

are fulfilled, we can construct a new Lie algebra ḡ such that, as a vector space, ḡ = s+ ⊕ s−
and such that the pairing is invariant under the adjoint representation of ḡ (i.e., 〈[a, b], c〉 =
−〈a, [b, c]〉],∀a, b, c ∈ ḡ). The latter condition leads to the following crossed commutation
rules between the elements of s+ and s−:

[zp, Zq] = f p
q,rz

r − cp,r
q Zr . (2.6)

The Lie algebra ḡ is then called a Drinfeld double and (s+, s−, ḡ) is called a Manin triple.
Then ḡ can be endowed with a (quasitriangular) Lie bialgebra structure (ḡ, δD)

δD(Zp) = −η(Zp) = −cq,r
p Zq ⊗ Zr, δD(zp) = δ(zp) = f p

q,rz
q ⊗ zr . (2.7)

This ‘double Lie bialgebra’ has as Lie sub-bialgebras (s+,−η) and its dual (s−, δ). Obviously,
several Manin triple structures for a given ḡ can be constructed (see, for instance, [9, 28, 29]).

We remark that (2.7) can be derived either from the classical r-matrix

r =
∑

p

zp ⊗ Zp,

or from its skew-symmetric counterpart

r̃ = 1

2

∑

p

zp ∧ Zp. (2.8)

If, by following [29], in an appropriate basis we have that c = −f we shall say that ḡ is a
self-dual Drinfeld double. It seems clear that the positive and negative Borel subalgebras b±
of any classical Lie algebra g have this property, but they do have the Cartan subalgebra in
common and, therefore, b± cannot be identified as s±. As a consequence, although the Weyl
symmetry is present, a classical Lie algebra g is not a Drinfeld double [2, 13].

3. The Drinfeld double gl(2) ⊕ t2

In order to illustrate our construction, let us start with the elementary example of the Drinfeld
double structure of the algebra gl(2) ⊕ t2.

We start by considering the three-dimensional solvable algebras s+ = {Z1, Z2, Z3} and
s− = {z1, z2, z3} with commutation rules

[Z1, Z2] = 0, [Z1, Z3] = 1√
2
Z3, [Z2, Z3] = − 1√

2
Z3, (3.9)

[z1, z2] = 0, [z1, z3] = − 1√
2
z3, [z2, z3] = 1√

2
z3. (3.10)

The structure tensors for s+, f
p
q,r (2.2) and s−, c

p,r
q (2.3) are

f 3
1,3 = −f 3

3,1 = 1√
2
, f 3

2,3 = −f 3
3,2 = − 1√

2
, cp,q

r = −f r
p,q .
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Now, let us consider the triple (s+, s−, ḡ = s+ + s−) and a bilinear form on ḡ defined
through (2.4). Compatibility conditions (2.5) are easily checked and the crossed commutation
rules between s+ and s− are given by (2.6):

[z1, Z3] = −[z2, Z3] = 1√
2
Z3,

[z3, Z1] = −[z3, Z2] = 1√
2
z3,

[z3, Z3] = − 1√
2
(z1 + Z1) + 1√

2
(z2 + Z2).

(3.11)

Since s+ and s− are isomorphic, we are dealing with a self-dual Manin triple [29]. In other
words, (s+, η) is a Lie bialgebra with co-commutator

η(Zp) = cq,r
p Zq ⊗ Zr.

Explicitly,

η(Z1) = η(Z2) = 0, η(Z3) = 1√
2
Z3 ∧ (Z1 − Z2).

Correspondingly, (s−, δ) is the dual Lie bialgebra with co-commutator

δ(zp) = f p
q,rz

q ⊗ zr ,

which reads

δ(z1) = δ(z2) = 0, δ(z3) = − 1√
2
z3 ∧ (z1 − z2).

Now, by considering the change of basis

H1 = 1√
2
(Z1 + z1), I1 = 1

i
√

2
(Z1 − z1),

H2 = 1√
2
(Z2 + z2), I2 = 1

i
√

2
(Z2 − z2),

F12 = Z3, F21 = z3,

(3.12)

and rewriting relations (3.9)–(3.11), we obtain

[Ii, ·] = 0, [H1,H2] = 0, [H1, F12] = F12, [H1, F21] = −F21,

[H2, F12] = −F12, [H2, F21] = F21, [F12, F21] = H1 − H2,

(3.13)

which are just the commutation rules for the Lie algebra ḡ = gl(2) ⊕ t2 in the usual basis
{H1,H2, F12, F21} ⊕ {I1, I2}.

Therefore, we have proven that the two solvable algebras s+ and s− together with the
pairing (2.4) endow ḡ = gl(2) ⊕ t2 with a Drinfeld double structure. Note that s+ and s−
have been chosen to be isomorphic to the upper and lower triangular 2 × 2 matrices of gl(2),
respectively.

Explicitly, the associated Lie bialgebra (2.7) is

δD(Ii) = 0,

δD(Hi) = 0,

δD(F12) = −1

2
F12 ∧ (H1 − H2) − i

2
F12 ∧ (I1 − I2),

δD(F21) = −1

2
F21 ∧ (H1 − H2) +

i

2
F21 ∧ (I1 − I2).
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This co-commutator δD can be derived from the classical r-matrix (2.8), i.e.

r̃ = 1

2
F21 ∧ F12 +

i

4
(H1 ∧ I1 + H2 ∧ I2) = r̃s + r̃t ,

where r̃s generates the standard deformation of gl(2) and r̃t denotes a twist that becomes
trivial in the representation of t2 where I1 − I2 = 0.

It is worth noting that from (3.12) the pairing (2.4) is simply the Killing form relations
for gl(2) in the ‘oscillator representation’ convention [30]

〈Hi,Hj 〉 = δij , 〈Hi, Fjk〉 = 0, 〈Fij , Fkl〉 = δjkδil (3.14)

supplemented by a suitable definition of the pairing for the additional central generators

〈Ii, Ij 〉 = δij , 〈Ii, Hj 〉 = 0, 〈Ii, Fjk〉 = 0. (3.15)

4. The gl(n) ⊕ tn case

For the general case of gl(n) the procedure is similar to the one followed in the preceding
case of gl(2). We consider two n(n + 1)/2-dimensional solvable Lie algebras s+ and s−,
isomorphic to the subalgebras defined by upper and lower triangular n × n matrices of gl(n),
with generators

s+ : {Xi, Yij }, i, j = 1, . . . , n, i < j,

s− : {xi, yij }, i, j = 1, . . . , n, i < j,

and commutation rules given by

[Xi,Xj ] = 0, [Xi, Yjk] = 1√
2
(δij − δik)Yjk, [Yij , Ykl] = (δjkYil − δilYkj ),

[xi, xj ] = 0, [xi, yjk] = − 1√
2
(δij − δik)y

jk, [yij , ykl] = −(δjky
il − δily

kj ).

Following (2.2) and (2.3), the corresponding structure tensors f and c read

f lm
i,jk = −f lm

jk,i = −c
i,jk

lm = c
jk,i

lm = 1√
2
(δij − δik)δjlδkm,

f mn
ij,kl = −c

ij,kl
mn = δjkδimδln − δliδkmδjn.

If we assume that the two algebras are paired by

〈xi, Xj 〉 = δi
j , 〈yij , Ykl〉 = δi

kδ
j

l , (4.16)

we can define a bilinear form on the vector space s+ ⊕ s− such that, in terms of (4.16), both
s± are isotropic for it. Under these conditions we can consider the triple (s+, s−, ḡ = s+ + s−).
Indeed, by taking into account (2.6) we obtain the crossed commutation rules

[xi, Xj ] = 0, [xi, Yjk] = 1√
2
(δij − δik)Yjk, [yij , Xk] = 1√

2
(δik − δjk)y

ij ,

[yij , Ykl] = {δik(Yjl + ylj ) − δjl(Yki + yik)} − δkiδlj (Xi + xi − Xj − xj ),

where Yij ≡ 0 and yij ≡ 0 for i > j .
We can avoid to check the compatibility conditions (2.5), since it is equivalent to the set

of Jacobi identities for ḡ, which turns out to be a well-known Lie algebra and (2.5). This can
be proven by considering the following change of basis:

Hi = 1√
2
(Xi + xi), Ii = 1

i
√

2
(Xi − xi), Fij = Yij + yji,
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and in this new basis the full set of commutation rules for ḡ is

[Ii, ·] = 0, [Hi,Hj ] = 0, [Hi, Fjk] = (δij − δik)Fjk,

[Fij , Fkl] = (δjkFil − δilFkj ) + δjkδil(Hi − Hj).
(4.17)

These relations are nothing but the commutation rules for gl(n) ⊕ tn, where gl(n) is defined
by the usual fundamental representation in terms of the n × n matrices Hi and Fij (i 
= j)

defined as follows:

(Hi)
jk = δ

j

i δ
k
i , (Fij )

kl = δk
i δ

l
j , i, j, k, l = 1, . . . , n.

Thus, (s+, s−, ḡ = gl(n) ⊕ tn) is a self-dual Manin triple.
We stress that the choice of basis turns out to be essential in order to exhibit the Drinfeld

double structure, since only those basis in gl(n) that are consistent with the pairing (3.14) can
be considered. This fact excludes the Chevalley basis (see [25]) for gl(n).

4.1. Lie bialgebra structure

From (2.7), the co-commutator δD defining the canonical Lie bialgebra structure on ḡ reads

δD(Ii) = 0,

δD(Hi) = 0,

δD(Fij ) = −1

2
Fij ∧ (Hi − Hj) − i

2
Fij ∧ (Ii − Ij ) +

j−1∑

k=i+1

Fik ∧ Fkj , i < j,

δD(Fij ) = 1

2
Fij ∧ (Hi − Hj) − i

2
Fij ∧ (Ii − Ij ) −

i−1∑

k=j+1

Fik ∧ Fkj , i > j.

In particular, (s+, δD) and its dual (s−, δD) are Lie sub-bialgebras. The classical r-matrix (2.8),
in the basis {Hi, Fij , Ii}, is written as

r̃ = 1

2

∑

i<j

Fji ∧ Fij +
i

4

∑

i

Hi ∧ Ii = r̃s + r̃t .

Again r̃s generates the standard deformation of gl(n) and r̃t is a twist (not of Reshetikhin type
[31]). When all Ii are equal the twist r̃t becomes trivial.

Note also that the chain of Drinfeld doubles ḡm ⊂ ḡm+1 is preserved at the level of Lie
bialgebras. However, although gl(n) is a subalgebra of ḡ, the co-commutator δD(gl(n)) does
not define a Lie sub-bialgebra since it depends on the extra tn sector.

Moreover, from the underlying Lie bialgebra (ḡ, δD) we see that, after quantization, the
extra Abelian sector tn gives rise to a set of twists that will intertwine with the standard
quantization of the gl(n) subalgebra (results concerning the known gl(n) quantizations can be
found in [32–36]). Moreover, from Uz(gl(n) ⊕ tn) one would be able to recover Uz(sl(n)) in
the representation of tn in which all Ii are equal. Note also that while this ‘central extension
procedure’ (1.1) can only be done on the complex, the final Uz(sl(n)) would be obtained
on R.

5. Concluding remarks

We have introduced a Drinfeld double structure on the Lie algebra ḡ = gl(n)⊕ tn, inspired by
the Cartan–Dynkin approach for the classification of simple Lie algebras in which the (solvable)
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Borel subalgebras play an essential role. We briefly comment on some consequences of this
construction both from a classical viewpoint and from the quantum deformation perspective.

Firstly, it is worth to emphasize that the choice of the basis in ḡ is crucial because in
order to have a Drinfeld double structure we need, up to a global factor, both an orthonormal
basis in the Cartan subalgebra and a fixed normalization for all the remaining generators. For
the gl(n) generators, the pairing is given by the Killing form, i.e., for the Cartan subalgebra
Kmn = δm,n while Kαβ = δα,−β for the root vectors. This seems to be the natural choice and
corresponds to the ‘oscillator representation’ convention [30]. For the tn sector, the pairing is
defined by imposing 〈Ii, Ij 〉 = δij .

Secondly, the results presented here can be thought of as a first step in order to approach
quantum deformations of simple Lie algebras from a quantum double perspective. In particular,
we have provided the first-order information for the construction of Uz(gl(n) ⊕ tn) and, as a
byproduct, of the Drinfeld–Jimbo deformation Uz(sl(n)). Under this approach the essential
task is to obtain the full quantization of a solvable Lie algebra in which the only deformed
coproducts correspond to the nilpotent generators. In this way, Serre relations do not play
any role since all the root vectors are considered on the same footing and the quantization
procedure is simplified by the self-dual nature of the underlying Lie bialgebra (and of the
associated Poisson–Lie group). To achieve this quantization one could follow [37], where
6-dimensional Drinfeld doubles have been fully quantized through the method given in [38].

By following the same lines, the discussion of the Drinfeld double structure for the B,C

and D series of simple Lie algebras will be presented elsewhere.
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